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Energy Eigenstates of a Quantum Gate System
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We report exact solutions of the Poyatos–Cirac–Zoller quantum gate system with
two trapped ions [Phys. Rev. Lett. 81, 1322 (1998)]. It is the superposition of
entangled states among the pure states of two harmonic oscillators and describes
a mixed mode involving the center-of-mass and relative motions with
commensurable frequencies. Theoretical analysis of the exact solutions shows
that for a given trapping frequency the relative motion cannot be laser-cooled.

Quantum computation has attracted much interest because of its use in
the development of polynomial-time algorithms for computational problems
[1–3]. A promising quantum register is based on a collection of ions stored
in a Paul trap. Two attractive schemes for performing quantum logic gates
have been proposed by Cirac, Poyatos, and Zoller [4, 5], which are associated
with cold or “hot” ions, respectively. The basics of the scheme with cold
ions has been demonstrated experimentally by Monroe, King, and coworkers
[6–8]. However, the exact solution of the Schrödinger equation for the consid-
ered system has not been derived because of difficulties in handling a system
with both harmonic and Coulomb potentials. In the “hot” ion scheme, Poyatos
et al. [5] employed only semiclassical solutions around the classical equilib-
rium “orbit” (a constant) [9, 10]. Feng, Duan, and coworkers [11, 12] have
also given the solutions in terms of infinite series. The ions, of course,
themselves exactly “solve” the Schrödinger equation and therefore are in the
corresponding motional state. In particular, they were initialized to a ground
state for a quantum register in previous experiments [8, 13]. To determine

1 Department of Physics, Hunan Normal University, Changsha 410081, China.
2 Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan, China, and
Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.

1405
0020-7748/00/0600-1405$18.00/0 q 2000 Plenum Publishing Corporation



1406 Hai et al.

the analytically exact ground state, it is important to seek strict energy eigen-
states of the system.

In this paper, we report results for solving the harmonic–Coulomb system
in detail. We find that under some relationships between the frequencies of
the motional mode and the quantum numbers of the relative motion, there
are exact eigenstates for a set of energy eigenvalues. The exact solution is
a product between wave functions of the center-of-mass (COM) and of
the relative motions which have commensurable frequencies. It describes a
superposition of entangled states among the pure states of two harmonic
oscillators. As a “quantum data bus” these entangled mixed states will be
useful.

The Poyatos–Cirac–Zoller quantum gate system is a pair of two-level
ions confined in a linear trap [5]. In the presence of the static potential the
Hamiltonian dominating the system is [5, 14, 15]

H 5
1

2m
( p2

1 1 p2
2) 1

1
2

mv2 (x2
1 1 x2

2) 1
e2

4pε0 (x2 2 x1)
(1)

where we have assumed that the two ions possess the same mass m and are
moving in the x direction with coordinates x2 . x1 and oscillation frequency
n. Setting the COM and the relative coordinates as

xc 5 (x1 1 x2)/2, pc 5 mc ẋc for mc 5 2m (2a)

r 5 x2 2 x1, pr 5 mrṙ for mr 5 m/2 (2b)

and inserting Eqs. (2) into Eq. (1) yields the Hamiltonian with separate form
H 5 Hc(xc , pc) 1 Hr(r, pr) whose corresponding wave function is

c 5 cc(xc)cr(r) for E 5 Ec 1 Er (3)

Thus we easily obtain the Schrödinger equations describing the COM and
the relative motions,
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The first of Eqs. (4) denotes a single harmonic oscillator with well-known
solution and level. We determine the solution of Eq. (4b) in the following
section.

Using the dimensionless variable j and constant s defined by
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we obtain Eq. (4b) in the simplified form
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This dimensionless expression is helpful for analyzing the orders of magnitude
of each term. In usual experiments [8], the ion’s mass is probably 10 times
the proton’s mass mp and the motion frequency is on the order of 107 Hz.
Then Eqs. (5) give j ' 108 r [m] and s ' 107 such that the sum of the two
negative terms in Eq. (6) is always greater than 105 for any value of distance
r between the two ions. This implies that the positive energy term 2Er /("n)
in Eq. (6) must be taken as quite large value. We will verify this assertion
by exactly solving Eq. (6). We guess the solution of Eq. (6) in the form

cr 5 Au(j)j exp 12
1
2

j22, u 5 o
`

i50
Ciji (7)

with A is the normalization constant and Ci are constant coefficients. Substitut-
ing these into Eq. (6), we obtain the equation
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To make the solution a finite series, we truncate the series in Eqs. (7) and
(8) at i 5 l for l 5 1, 2, . . . . After the truncation, equating the sum of
coefficients of jl, jl21, and jl2j22 (for j 5 0, 1, 2, . . . , l 2 1) to zero,
respectively, leads to the following equations for the coefficients Ci:

2Er /("n) 2 3 2 2l 5 0, 2sCl 1 2Cl21 5 0

for l 5 1, 2, . . . (9a)

(l 2 j )(l 2 j 1 1)Cl2j 2 sCl2j21 1 2( j 1 2)Cl2j22 5 0

for j 5 0, 1, . . . , l 2 1 (9b)

and Cj 5 0 for j , 0. These are overdetermined linear equations with the
number of coefficients Ci being less than that of the equations. They therefore
have solutions only for a set of special energy values
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Er 5 Erl 5 (l 1 3/2)"nl for n 5 nl , l 5 1, 2, . . . (10)

and constant s 5 sl. For example, in the case l 5 1 of Eqs. (9) we have
the equations

2Er1 /"n1 2 5 5 0, 2s1C1 1 2C0 5 0, 2C1 2 s1C0 5 0

with the solutions C0 5 1, C1 5 1 and the special energy values Er1 5 2.5"
n1, s1 5 2. Note that sl . 0 in Eqs. (5). When l 5 2, Eqs. (9) give the
four equations

2Er2 /("n2) 2 7 5 0, 2s2 C2 1 2C1 5 0,

2C1 2 s2C0 5 0, 6C2 2 s2 C1 1 4C0 5 0

Under the conditions Er2 5 3.5"n2 and s2 5 !20 they have the solutions
C0 5 1, C1 5 !5, and C2 5 1. We have obtained, by means of a similar
analysis, the constant sl and solutions of Eqs. (9) up to l 5 7. The application
of Eqs. (5) and (10) produces the corresponding frequencies and energies.
For the cases l $ 3, any l is associated with N . 1 sets of solutions. In Table
I we show the detailed data for a set of the coefficients Ci , constant s2

l ,
frequencies nl , and energy Erl.

Although the energies and frequencies here are too high for usual experi-
ments [6–8], Table I displays several interesting results: (1) The constant
sl 5 s(l) depends on the quantum number l of the relative motion, so that
Eqs. (5) give the frequency nl 5 n[s(l)] as a function of l. (2) The energy
and frequency decrease with increasing l value. We estimate that the quantum
number l corresponding to a frequency of 107 Hz is greater than 100. Thus
the energy given in Eq. (10) is quite large, as asserted above. (3) The lower
level corresponds to the state of relative motion with larger quantum number
l . 100, where the quantum effect is not evident. The main quantum character-
istics of the system come from the COM motion for the frequency n , 1010

Hz. If the frequency is fixed, the quantum number l is also fixed. Therefore
the quantization of the energy is due solely to the COM mode in this case.

Table I. Coefficients in Solutions (7) and the Corresponding Quantities

l C0 C1 C2 C3 C4 C5 C6 C7 s2
l nl (Hz) Erl (J)

1 1.0 1.0 4.0 3.8 3 1020 1.0 3 10213

2 1.0 2.2 1.0 20.0 7.5 3 1019 2.8 3 10214

3 1.0 3.7 3.7 1.0 54.7 2.7 3 1019 1.3 3 10214

4 1.0 5.3 8.0 4.2 0.8 112.4 1.3 3 1015 7.5 3 10215

5 1.0 7.2 15.7 14.2 5.5 0.8 208.8 7.2 3 1018 4.9 3 10218

6 1.0 9.3 27.0 34.1 20.9 6.1 0.7 347.6 4.3 3 1018 3.4 3 10215

7 1.0 11.5 41.8 68.6 58.0 14.0 20.6 20.1 529.8 2.8 3 1018 2.5 3 10215
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Applying the result to Eqs. (7), we get the wave function of relative
motion

crl 5 Al1o
l

i50
Ciji2 j exp12

1
2

j22 for l . 100 (11)

The wave function and energy of the COM motion governed by Eqs. (4) are

cc 5 ccnl 5 BnlHn(acl xc) exp(2 1–2 a2
cl x2

c) (12)

Ec 5 Ecnl 5 (n 1 1–2 )"nl for n 5 0, 1, 2, . . . ; l . 100 (13)

where Bnl is constant and Hn (aclxc) is the Hermitian polynomial with

acl 5 !mcnc /" 5 !2mnl /" 5 2a, nc 5 nl (14)

Combining Eq. (3) with Eqs. (11) and (12), we obtain the exact energy
eigenstate

c 5 cnl 5 NnlHn (aclxc)1o
l

i50
Ciji)2j expF2

1
2

(a2
clx2

c 1 j2)G (15)

with Nnl 5 AlBnl being the normalization constant. The total energy of the
system is

Enl 5 Ecnl 1 Erl 5 (n 1 l 1 2)"nl for n 5 0, 1, 2, . . . ; l . 100

(16)

This solution represents superposition and entanglement among the pure
phonon states of two harmonic oscillators. In the case n 5 0, l 5 1, substituting
Eqs. (2), (5), (14) and H0 5 1, C0 5 C15 1 into Eq. (15) yields the exact
solution as an evident entangled state

c01 5 N01[1 1 a(x2 2 x1)] a(x2 2 x1) exp F21
2

ã2(x2
1 1 x2

2)G
5

1

!6
(.0&1.1&2 2 .1&1.0&2 1 .0&1.2&2 1 .2&1.0&2 2 !2.1&1.1&2) (17)

under the condition s1 5 2. Here . j&i denotes that ion i is in the state . j&; by

.0&i 5 (ã/!p)1/2 exp(21–2 ã2x2
i ), ã 5 !2a

.1&i 5 !2ãxi.0&i , (18)

.2&i 5 !2(ã2x2
i 2 1–2 ).0&i

we mean several lower pure states of the harmonic oscillator i. In fact, for
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any l, say l . 100, making use of the expansion form of the Hermitian
polynomial, we can rewrite Eq. (15) as

cnl 5 5
Nnl[an(.0&1.1&2 2 .1&1.0&2) 1 bn(.0&1.2&2 1 .2&1.0&2) 1 On(.1&)]

even n
Nnl[b8n(.0&1.2&2 2 .2&1.0&2) 1 O8n(.1&)]

odd n

(19)

where an , bn , and b8n are constants and On(.1&), O8n(.1&) are the higher exited
states without .0&i. Noticing Eq. (14) and ã 5 !mnl /" 5 !m n8l /" in Eqs.
(5), we see that the frequency of pure states really is n8l 5 nl 5 nc, with nc

being the frequency of the COM mode. That is, Eqs. (15) and (19) are
superpositions of the entangled states among various pure states of the har-
monic oscillator with mass m and frequency nl , which is equal to the corres-
ponding frequency of COM motion. For a single ion confined in the trap, it
will oscillate with frequency n 5 nc. However, the frequencies n8l and nc are
commensurable, which is required for operation of the quantum gates [5].

In the state cnl, ion i possesses (n 1 l 1 2) possible states . j&i for j 5
0, 1, . . . , (n 1 l 1 1). Although the entanglements and superposition of the
states make the quantum system so evasive, using the projection postulate
[16] in quantum mechanics allows one to arrive at a simple entangled state
by the action of a measurement. For instance, suppose the system is initially
in any state of Eqs. (19). Now we measure the state .0&1 of ion 1; then Eqs.
(19) mean that the state cnl has been projected either onto Dn.0&1.1&2 1
D8n.0&1.2&2 for even n or onto .0&1.2&2 for odd n instantaneously, where Dn

and D8n are constants. The state cnl will not be purified to a pure singlet
unless the ions undergo collective measurement [17]. Experimental realization
of the measurement is a difficult task. But the COM mode has been cooled
to the ground state [4] with n 5 0 by the Raman transition [8] with level
difference "nc. For a given frequency nl the mode of the relative motion
cannot be cooled, since the quantum number l is fixed by the function nl 5
n(l). In the case n 5 0, Eq. (15) gives the exact COM ground state, which
is still the entanglement and superposition among the pure phonon states,
representing a mixed mode involving the COM and relative motions. Because
heating of the non-COM mode can be substantially suppressed [8], such
entangled ground states are important for transferring quantum information
between the two ions.

We have constructed an exact solution of the quantum gate system with
two trapped ions. It describes the entanglements and superposition among
the pure states of two harmonic oscillators. In the presence of laser cooling,
the system can transit to an entangled ground state of COM mode. However,
for a given trapping frequency the relative motion cannot be laser-cooled.
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Extending the results to a string of N two-level ions stored in a linear
trap [4], we expect the existence of a similar exact solution, which is the
superposition of entangled states among pure states of the N oscillators. By
laser cooling one can arrive at an entangled ground state, as in the two-ion
case. Taking the direct product between this state and an internal state vector
as the initial state, then the quantum logic operations on the ions will lead
to entanglement between the external and internal states. These problems
need further exploration for realizing quantum computation.
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